Data augmentation for disruption prediction via robust surrogate models

نویسندگان

چکیده

The goal of this work is to generate large statistically representative data sets train machine learning models for disruption prediction provided by from few existing discharges. Such a comprehensive training database important achieve satisfying and reliable results in artificial neural network classifiers. Here, we aim robust augmentation the multivariate time series using Student $t$ process regression. We apply regression state space formulation via Bayesian filtering tackle challenges imposed outliers noise set reduce computational complexity. Thus, method can also be used if resolution high. use an uncorrelated model each dimension impose correlations afterwards colouring transformations. demonstrate efficacy our approach on plasma diagnostics three different classes DIII-D tokamak. To evaluate distribution generated similar data, additionally perform statistical analyses methods analysis, descriptive statistics classic clustering algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Augmentation for Training of Noise Robust Acoustic Models

In this paper we analyse ways to improve the acoustic models based on deep neural networks with the help of data augmentation. These models are used for speech recognition in a priori unknown possibly noisy acoustic environment (with the presence of office or home noise, street noise, babble, etc.) and may deal with both the headset and distant microphone recordings. We compare acoustic models ...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Surrogate models for aerodynamic performance prediction

Automatic optimisers can play a vital role in the design and development of engineering systems and processes. However, a lack of available data to guide the search can result in the global optimum solution never being found. Surrogate models can be used to address this lack of data and allow more of the design space to be explored, as well as provide an overall computational saving. In this th...

متن کامل

Sparse Bayes estimation in non-Gaussian models via data augmentation

In this paper we provide a data-augmentation scheme that unifies many common sparse Bayes estimators into a single class. This leads to simple iterative algorithms for estimating the posterior mode under arbitrary combinations of likelihoods and priors within the class. The class itself is quite large: for example, it includes quantile regression, support vector machines, and logistic and multi...

متن کامل

Evaluation of failure probability via surrogate models

Evaluation of failure probability of a given system requires sampling of the system response and can be computationally expensive. Therefore it is desirable to construct an accurate surrogate model for the system response and subsequently to sample the surrogate model. In this paper we discuss the properties of this approach. We demonstrate that the straightforward sampling of a surrogate model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Plasma Physics

سال: 2022

ISSN: ['1469-7807', '0022-3778']

DOI: https://doi.org/10.1017/s0022377822000769